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Abstract—Amidst the rising incidence of neurological disor-
ders detected through electroencephalograms (EEG), this study
explores innovative techniques for feature extraction. Analyzing
EEG data from 88 subjects across 19 channels, a diverse set of
18 features including Relative Intensity Ratio, Power Spectral
Intensity, Petrosian Fractal Dimensions, Hjorth Mobility, Hjorth
Complexity, Detrended Fluctuation Analysis, Higuchi Fractal
Dimension, Hjorth Activity, Sample Entropy, and Lempel-Ziv
Complexity and many more are extracted. Encompassing tem-
poral and spectral domains, these features provide comprehensive
insights into neurophysiological processes, enabling nuanced EEG
data exploration and identification of subtle patterns linked
with various neurological disorders. Through rigorous analysis,
we evaluate the efficacy of these features in precise disease
discrimination using advanced building on two models: Bagging
Blended Combination of XGBoost and LightGBM (BBE-XL)
and a Multilayer Artificial Neural Network (ML-ANN). By
deciphering intricate EEG signal information, this study aids
in early detection and intervention for EEG-related disorders,
with 97.62% accuracy.

Index Terms—EEG, XGBoost, LightGBM, ANN, Fractal Di-
mensions, Hjorth, Entropy

I. INTRODUCTION

The field of neuroscience has experienced a remarkable
transformation with the widespread adoption of electroen-
cephalograms (EEG) as a pivotal tool for detecting, diagnos-
ing, and monitoring various brain disorders [1]. EEG records
the electrical activity of the brain by placing electrodes on the
scalp, providing invaluable insights into the intricate neural
processes that govern cognitive, sensory, and motor functions
[2]. The real-time data provided by EEG can offer valuable
insights into brainwave patterns, helping medical professionals
assess brain health and aiding in the formulation of appropriate
treatment strategies. Additionally, EEG’s non-invasive nature
and high temporal resolution make it a valuable tool for
understanding the brain’s dynamic activity and its responses
to different stimuli, contributing to our understanding of cog-
nition, emotions, and neurological disorders.

In recent times, there has been a disconcerting upswing
in the occurrence and prevalence of brain disorders, ranging
from epileptic seizures, neurodegenerative conditions, to neu-

ropsychiatric ailments, a surge that can be ascribed to various
interplaying factors such as the shifting demographics towards
older populations, transformative lifestyle habits, heightened
health consciousness, and advancements in diagnostic profi-
ciency’s. This concerning trend underscores a growing and ur-
gent need for accurate, efficient, and scalable diagnostic tools;
however, this surge in neurological disorders is paralleled by
a shortage in the availability of specialized medical profes-
sionals capable of effectively diagnosing and managing these
intricate conditions, necessitating the development of strategies
to address this gap through bolstered medical education and
innovative healthcare delivery approaches.

Fig. 1. US EEG Market from 2015 - 2024 [3]

As brain disorders become more prevalent, the healthcare
sector faces challenges in providing timely and accurate di-
agnoses. The shortage is evident even in developed countries
like the US, where there is a lack of EEG technicians despite
the growing demand for EEG machines [4]. This can be
evidently seen as even developed economies like the US are
suffering a shortage of EEG technicians, with rising growth
in EEG machine expansions as seen in Fig. 1 which was
taken from [3]. To address these challenges, there’s a crucial
need for technologically advanced solutions that can assist
medical practitioners in efficiently diagnosing and managing



brain disorders. These solutions could potentially bridge the
gap between the increasing demand for neurological care and
the limited availability of skilled professionals.

Before delving into our feature extraction and modeling
methodologies, we glean insights from an extensive review
of related literature. This synthesis illuminates the current
landscape of EEG-based disease detection, highlighting the
existing advancements, limitations, and potential research di-
rections.

II. LITERATURE SURVEY

In recent years, the domain of EEG analysis has wit-
nessed a surge of interest in applying machine learning
techniques for various bio-engineering applications. Ahi et
al. [5] embarked on a comprehensive review spanning over
three decades of literature (1988-2018), elucidating the diverse
landscape of classification methods such as Naive-Bayes,
Decision Tree/Random Forest, and Support Vector Machine
(SVM). Notably, supervised methods like SVM and K-Nearest
Neighbors (KNN) showcased superior accuracy compared
to unsupervised counterparts. Interestingly, the potential for
amalgamating these methods emerged as a strategy to enhance
the overall classification accuracy, echoing the sentiments
echoed by multiple studies in this domain.

A parallel endeavor by Ball et al. [6] delved into the realm of
clinical EEG analysis, juxtaposing a feature-based framework
against contemporary end-to-end methods. Their study drew
upon the Temple University Hospital (TUH) Abnormal EEG
Corpus (v2.0.0), encompassing a substantial dataset of around
3000 EEG recordings. Impressively, accuracy levels ranging
from 81% to 86% were achieved across both the feature-based
and end-to-end paradigms. The study’s insights unveiled the
significance of common data aspects such as delta and theta
band power at specific temporal electrode locations, shared by
both methodologies.

In the context of early prediction of epileptic seizures (ES),
Rasheed et al. [7] offered a comprehensive review emphasizing
the role of machine learning (ML) techniques, along with
Deep Learning (DL) algorithms, in addressing this critical
task. By thoroughly exploring facets like feature selection,
ES detection, prediction, and evaluation methodologies, the
study underscored the imminent importance of timely ES
prediction. This review echoed the observations of Ahi et
al. [5], revealing the potential of ML-based algorithms to
revolutionize ES prediction, while also identifying gaps and
challenges to inspire future investigations.

Drawing inspiration from similar themes, Rostami et al. [8]
concentrated on diagnosing depression through nonlinear anal-
ysis of EEG signals. Their novel approach aimed to discern
between depressed patients and normal subjects. Employing
a diverse set of features, including power from EEG bands
and four nonlinear metrics, the study harnessed classifiers
like k-Nearest Neighbor, Linear Discriminant Analysis, and
Logistic Regression. Results underscored the significance of
feature combination, reminiscent of the insights from Ahi
et al. [5], with the correlation dimension coupled with a

Logistic Regression classifier achieving the pinnacle accuracy
of 83.3%. By integrating all nonlinear features with the Lo-
gistic Regression classifier, an accuracy of 90% was attained.
This work illuminated the potential of combined features for
enhanced performance.

Expanding on the realm of EEG-based Brain-Computer
Interfaces (BCIs), Chugh et al. [9] conducted a comprehen-
sive analysis of machine learning (ML) and deep learning
(DL) techniques across various BCI frameworks, focusing
on paradigms such as motor imagery, p300, and steady-
state evoked potentials. Their survey not only highlighted
ML’s instrumental role in augmenting BCI efficiency but also
addressed crucial challenges spanning signal processing, BCI
functionality, performance assessment, and commercialization.

Mora et al. [10] introduced a novel multi-modal Machine
Learning (ML) approach for classifying brain states based
on EEG data. The approach creatively combined Continuous
Wavelet Transform (CWT) and BiSpectrum (BiS) features,
showcasing a resource-efficient alternative to deep learning
methods. Notably, this approach focused on distinguishing
between Mild Cognitive Impairment (MCI) and Alzheimer’s
disease (AD) patients from Healthy Control (HC) subjects.
Their experimentation, employing a balanced dataset, showed
the prowess of the concatenated CWT and BiS features
(CWT+BiS) when coupled with the Multi-Layer Perceptron
(MLP) classifier.

In line with the trajectory of employing EEG data for
clinical insights, Mac et al. [11] devised a machine learning
methodology to predict the effectiveness of selective serotonin
reuptake inhibitor (SSRI) treatment in major depressive disor-
der (MDD) patients. Leveraging pre-treatment EEG data, their
approach, which incorporated feature selection and a mixture
of factor analysis (MFA) model, achieved a commendable
accuracy of 87.9%, accompanied by promising specificity and
sensitivity values.

Finally, Rami et al. [12] embarked on an extensive explo-
ration of signal processing techniques within the realm of
brain-computer interfaces (BCIs) involving motor movement
classification. Employing a variety of machine learning algo-
rithms, they harnessed features extracted from EEG signals
to enhance classification accuracy, akin to the methodologies
discussed in [5], [10].

Noteworthy achievements were observed, particularly with
the Medium-ANN model, which demonstrated exceptional
performance metrics such as AUC (Area Under Curve), Co-
hen’s Kappa coefficient, Matthews correlation coefficient, and
loss. These outcomes exemplified the versatility and appli-
cability of the approach in scenarios ranging from robotic
prostheses to resource-constrained environments.

In conclusion, the literature survey encapsulates the evolu-
tion of machine learning techniques in EEG analysis for bio-
engineering applications. While various models and method-
ologies have been tested across different studies, the emphasis
on feature extraction methods seems to have been relatively
subdued.

Instead, a predominant trend emerges, where several papers



have leaned towards utilizing a limited set of fundamental
features. This observation highlights an avenue for future
exploration and underscores the potential of incorporating
more advanced feature extraction techniques for further en-
hancements in EEG-based applications.

III. METHODOLOGY

A. Data

This study employs an EEG dataset [13]–[15] with resting
state-closed eyes recordings from 88 subjects, categorized into
distinct groups: 36 with Alzheimer’s disease (AD group), 23
with Frontotemporal Dementia (FTD group), and 29 healthy
controls (CN group). The Mini-Mental State Examination
(MMSE) was used to assess cognitive impairment, yielding
scores of 17.75 (sd=4.5) for AD, 22.17 (sd=8.22) for FTD,
and 30 for CN. Age averages were 66.4 (sd=7.9) for AD,
63.6 (sd=8.2) for FTD, and 67.9 (sd=5.4) for CN.

EEG recordings were conducted at the Second Dept. of
Neurology at the AHEPA General Hospital, using a Nihon
Kohden Electroencephalogram twentyone-hundred hardware
with nineteen scalp electrodes and 2 reference electrodes
according to the 10-20 system [15]. The recordings followed
a standardized protocol with closed eyes and skin impedance
below 5 kΩ. A sampling rate of 500 Hz and resolution of 10
µV/mm were employed.

Recording parameters were optimized [14], including sensi-
tivity (10 µV/mm), time constant (0.3 s), and high-frequency
filter (70 Hz). Recording durations were around thirteen min-
utes for AD with a mininum of 5.1, maximum of 21.3, twelve
minutes for FTD with a minimum of 7.9, maximum of 16.9,
and thirteen point eight minutes for CN with a minimum
of 12.5, maximum of 16.5, totaling fourhundred eightyfive
minutes of AD, about two hundred seventysix minutes of FTD,
and four hundred two minutes of CN recordings.

EEG preprocessing involved transforming recordings into
BIDS-accepted .set format. A comprehensive regimen in-
cluded Butterworth band-pass filtering (0.5 to 45 Hz), re-
referencing to A1-A2, and Artifact Subspace Reconstruction
(ASR) [13]. Independent Component Analysis (ICA) gener-
ated 19 components mirroring original signals. The ”ICLabel”
routine in EEGLAB facilitated automated classification, reject-
ing components with ”eye artifacts” or ”jaw artifacts” [15],
managing residual eye movement artifacts despite closed-eye
conditions.

B. Features

In this study, we emphasize a comprehensive examination
of several features that have frequently been under-explored in
prior research investigations. Our analysis encompasses a total
of 18 distinct features, meticulously selected for evaluation,
which are outlined below with their importance mentioned in
Figure 2.

1) Relative Intensity Ratio (RIR): RIR evaluates the distri-
bution of spectral power within distinct frequency bands in an
EEG signal. It quantifies the ratio of power within a specific
frequency range to the total power across all frequencies. This

Fig. 2. Feature Importance

metric aids in identifying the dominance of certain frequency
components.

RIR =
Power in Target Band

Total Power
(1)

2) Power Spectral Intensity (PSI): PSI characterizes the en-
ergy distribution across frequency bands within EEG data. By
computing the power spectral density and integrating it within
defined frequency ranges, PSI helps reveal the frequency-
specific energy contributions. Here, P (f) is the power spectral
density.

PSI =
∫ fmax

fmin

P (f) df , with P (f) (2)

3) Petrosian Fractal Dimensions (PFD): PFD assesses the
irregularity or fractal complexity of EEG waveforms across
various scales.

PFD =
log10(N)

log10(N) + log10(
N

N+0.4Npeaks
)

(3)

4) Hjorth Mobility: Hjorth Mobility quantifies the abrupt
changes in amplitude of an EEG signal, providing insight into
its dynamic activity levels. Here, x is the EEG signal and diff
represents the first discrete difference.

Hjorth Mobility =
stddev(diff(x))

stddev(x)
(4)

5) Hjorth Complexity: Hjorth Complexity is a measure
of EEG waveform complexity, indicating the irregularities in
signal dynamics. It’s derived by dividing Hjorth Mobility by
the standard deviation of the first derivative, reflecting the
interplay between signal mobility and its local variations.

Hjorth Complexity =
Hjorth Mobility

d
dt (Hjorth Mobility)

(5)



6) Detrended Fluctuation Analysis (DFA): DFA investi-
gates long-range correlations within EEG signals. It involves
detrending the signal and calculating fluctuations to explore
self-similarity. The calculation involves computing the root-
mean-square of the integrated and detrended signal. Here, N
is the signal length, y(i) represents the detrended signal, and
⟨y⟩n is the local trend estimated over n data points.

DFA(n) =

√√√√ 1

N

N∑
i=1

[y(i)− ⟨y⟩n]2, (6)

7) Higuchi Fractal Dimension: This dimension gauges
temporal complexity in EEG data. It quantifies the relationship
between signal length and the length of its trajectory on a 2D
plane. Here, N is the signal length, r is the length of the
sub-segments.

D =
log(N)

log(N/r)
(7)

8) Hjorth Activity: Hjorth Activity characterizes the overall
energy or amplitude variations within an EEG signal. It’s
determined by computing the variance of the signal and offers
a glimpse into the general activity level of brain dynamics.
Here, x is the EEG signal.

Hjorth Activity = var(x) (8)

9) Sample Entropy: Sample Entropy evaluates the com-
plexity of EEG signals by determining the likelihood of re-
curring patterns within a specified tolerance. It accommodates
patterns of varying lengths [16]. The calculation involves
comparing sequences of values with the designated tolerance.
Here, A is the number of similar patterns of length m that
are within a tolerance r of each other, and B is the number
of similar patterns of length m + 1 that are within the same
tolerance r.

Sample Entropy = − log

(
A

B

)
(9)

10) Lempel-Ziv Complexity: Lempel-Ziv Complexity quan-
tifies EEG signal complexity based on the minimal number of
distinct patterns required for its representation. It employs the
Lempel-Ziv compression algorithm. Here N is the embedding
dimension, N ! represents the factorial of N , and pi is the
probability of occurrence of the ith permutation.

LZC =
Number of Different Patterns

Length of Signal
(10)

11) Permutation Entropy: Permutation entropy quantifies
the complexity of a time series by measuring the diversity of its
ordinal patterns. It characterizes the predictability of a signal
based on the probabilities of observing different orderings of
data points.

PE = −
N !∑
i=1

pi log2(pi) (11)

Fig. 3. Architecture of Bagging Blended Ensembled Combination of XGBoost
and LightGBM (BBE-XL)

12) Spectral Entropy: Spectral entropy assesses the irreg-
ularity or complexity of the frequency distribution of an EEG
signal’s power spectrum [16]. It is a measure of the spread of
energy across different frequency components. Here P (f) is
the normalized power spectral density at frequency f .

SE = −
∑
f

P (f) log2(P (f)) (12)

13) SVD Entropy: Singular Value Decomposition (SVD)
entropy quantifies the randomness or complexity of an EEG
signal by considering the distribution of its singular values.
It captures the level of variability and pattern richness in the
signal. Here si is the ith singular value and N is the number
of singular values.

SV DEntropy = −
N∑
i=1

si∑N
j=1 sj

log2

(
si∑N
j=1 sj

)
(13)

14) Katz Fractal Dimension: The Katz fractal dimension
quantifies the complexity or self-similarity of an EEG signal’s
trajectory in phase space. It offers insights into the irregularity
and fractal nature of the signal. Here L is the total length of



the signal’s trajectory, and N is the length of the Euclidean
distance between the first point in the trajectory and the point
that maximizes it.

DK =
log(L)

log(N/L)
(14)

15) Shannon Entropy: Shannon entropy measures the un-
certainty or information content of an EEG signal by consid-
ering the distribution of its amplitude values. It quantifies the
level of randomness or disorder in the signal [16], [17]. Here n
is the number of distinct amplitude values, xi are the possible
amplitude values, and p(xi) is the probability of occurrence
of xi.

H(X) = −
n∑

i=1

p(xi) log2 p(xi) (15)

16) Weighted Permutation Entropy: Weighted permutation
entropy extends permutation entropy by assigning different
weights to different ordinal patterns. It captures the signifi-
cance of various patterns in the time series. Here wi is the
weight associated with the ith permutation.

WPE = −
N !∑
i=1

wi log2(wi) (16)

17) Approximate Entropy: Approximate entropy quantifies
the degree of regularity or similarity between sub-sequences
within an EEG signal. It assesses how likely the signal is to
remain close to its current state over successive time points
[16], [17]. Here Cm(r) is the conditional probability that two
sub-sequences of length mm have a maximum difference less
than r for a given m and tolerance r.

ApEn = − log

(
Cm+1(r)

Cm(r)

)
(17)

18) Number of Zero Crossings: The number of zero cross-
ings indicates the frequency of oscillations or waveform
changes in an EEG signal. It is used to estimate the signal’s
periodicity and dynamic behavior. Here N is the length of the
signal and xi are the signal values.

ZC =
1

2

N−1∑
i=1

|sign(xi)− sign(xi+1)| (18)

Apart from the above mentioned features, Age, Gender and
Mini-Mental State Examination (MMSE) were also used as
Features, with the following models.

C. Models

In this section, we present the two predictive models em-
ployed in this research: a Bagging Blended Ensembled Com-
bination of XGBoost and LightGBM (BBE-XL) and a Multi-
layer Artificial Neural Network (ML-ANN). These models
were designed to address the complex and multifaceted nature
of the prediction task, with each model leveraging distinct
techniques to achieve optimal performance.

Fig. 4. Architecture of Multi-layer Artificial Neural Network (ML-ANN)

The BBE-XL is an ensemble model that amalgamates the
strengths of two prominent gradient boosting frameworks,
namely XGBoost and LightGBM. Bagging, a resampling tech-
nique, is employed to enhance the stability and generalizability
of the ensemble. XGBoost and LightGBM models are trained
on bootstrapped subsets of the training data, and their predic-
tions are subsequently combined using a weighted averaging
technique. Ensembling was further performed with 10 fold
Cross Validation and 50 iterations for a total of 500 flows.
By leveraging the complementary features of XGBoost and
LightGBM, the BBE-XL model aims to mitigate overfitting
while capturing intricate relationships within the data.

The Multilayer Artificial Neural Network (ML-ANN) con-
stitutes a deep learning architecture tailored for intricate pat-
tern recognition. Comprising multiple layers of interconnected
neurons, the ML-ANN model is designed to capture intricate
nonlinear relationships present in the data. The input layer
accepts feature vectors, which are then propagated through
hidden layers employing nonlinear activation functions. The
network’s weights are iteratively updated during training using
backpropagation, optimizing predictive accuracy. Regulariza-
tion techniques such as dropout are employed to prevent
overfitting and enhance the model’s generalization capability.

Both models undergo rigorous hyperparameter tuning to
achieve optimal performance. The BBE-XL model’s pa-
rameters, including learning rate, is fine-tuned using cross-
validation. Similarly, the ML-ANN model’s architecture, in-
cluding the number of layers, neurons per layer, and activation
functions, is optimized through a systematic search over
hyperparameter space with 250 epochs.

IV. RESULTS

To evaluate the models’ predictive capabilities, a compre-
hensive suite of performance metrics is employed, encompass-
ing accuracy, precision, recall, F1-score, and area under the



TABLE I
MODEL RESULTS METRICS

Model
Performance Metrics

Accuracy AUC Recall Precision F1 Kappa
Multi-layer Artificial Neural Network (ML-ANN) 0.9761 0.982 0.9761 0.9765 0.9761 0.9631

Bagging Blended Ensembled Combination of XGBoost and LightGBM (BBE-XL) 0.9762 0.9970 0.9710 0.9766 0.9763 0.9635

receiver operating characteristic curve (AUC-ROC). Further-
more, extensive cross-validation and sensitivity analyses are
performed to assess the models’ robustness and generalizabil-
ity, the results of which are given in Table I.

The obtained results for the Multilayer Artificial Neural
Network (ML-ANN) and the Bagging Blended Ensembled
Combination of XGBoost and LightGBM (BBE-XL) mod-
els remarkably demonstrate their exceptional performance in
tackling the predictive task. Both models have showcased a re-
markable level of accuracy, with ML-ANN achieving an accu-
racy of 0.9761 and BBE-XL achieving 0.9762. This marginal
difference in accuracy between the two models signifies their
comparable prowess in capturing complex patterns within the
data. Additionally, the area under the curve (AUC) values
for both models further substantiate their excellence, with
ML-ANN achieving an AUC of 0.982 and BBE-XL closely
following at 0.9970. This similarity in AUC underscores the
models’ robustness in distinguishing between different classes.

Moreover, when assessing the recall, precision, and F1-score
metrics, both models continue to exhibit an outstanding degree
of consistency. ML-ANN records a recall of 0.9761, while
BBE-XL closely mirrors with a value of 0.9710. Likewise,
precision values for ML-ANN (0.9765) and BBE-XL (0.9766)
portray their capability to minimize false positives effectively.
Notably, the F1-scores of 0.9761 for ML-ANN and 0.9763 for
BBE-XL validate their adeptness in maintaining a harmonious
balance between precision and recall.

V. CONCLUSION

In this study, we presented two comprehensive
methodologies for distinguishing EEG signals against
two Electroencephalogram-Related Disorders: ’Alzheimers
and Frontal-Dementia. Multiple features from frequency
domain, entropy and fractal dimensions were computed to
create the dataset. After this step, the curated dataset was
implemented using the two models: Combination of XGBoost
and LightGBM (BBE-XL) and a Multilayer Artificial Neural
Network (ML-ANN) and both achieved an almost identical
high accuracy of 97.61% & 97.62%.

This near-congruence in performance metrics not only ac-
centuates the excellence of both models but also underscores
their remarkable proximity in predictive capabilities. In con-
clusion, both the ML-ANN and BBE-XL models have ex-
hibited commendable proficiency, with their consistently high
performance across a spectrum of metrics establishing them as
closely matched contenders in this predictive endeavor. This
study shows how these algorithms can be a suitable helper for

reducing the burden on doctor’s when diagnosing cognitive
decline and other related diseases.
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